Journal of Organometallic Chemistry, 226 (1982) C52-C54 Elsevier Sequoia S A, Lausanne – Printed in The Netherlands

Preliminary communication

SYNTHESIS AND CHARACTERIZATION OF $C_5(CH_3)_5 Fe(CO)_3^+ PF_6^- AND C_5(CH_3)_5 Fe(CO)_2^- K^+$

DANIEL CATHELINE and DIDIER ASTRUC

Laboratoire de Chimie des Organométalliques, ERA CNRS No 477, Université de Rennes, Campus de Beaulieu, 35042 Rennes Cedex (France)

(Received October 29th, 1981)

Summary

 $C_5(CH_3)_5$ Fe(CO)₃⁺ PF₆⁻ is obtained in 67% yield by reaction of $C_5(CH_3)_5$ Fe(CO), Br with AlCl₃ at 60°C under a 40-atm CO pressure. $\{C_5(CH_3), Fe(CO)\}$, does not react with Na/Hg, but a 2 h reduction on K mirror in THF at 20°C provides $C_5(CH_3)_5 Fe(CO)_2$ K⁺, which can be alkylated by CH_3I to give $C_5(CH_3)_5$ Fe(CO)₂ CH₃ in 80% overall yield.

Despite the utility of the $C_5(CH_3)_5(Cp')$ ligand [1], its only iron complexes reported are $Cp'_{2}Fe$, $Cp'_{2}Fe_{2}(CO)_{4}(Fp'_{2})^{*}$ [2] and some of the Cp'Fearene series [3]. Much work has been carried out with the Fp series [4]. starting from $Fp^{-}[4]$ or $Fp(CO)^{+}[5]$ and we now report the synthesis and characterization of $Fp'^{-}K^{+}$ and $Fp'(CO)^{+}PF_{6}^{-}$.

The most convenient route to $FpCO^{\dagger}$ is probably the ligand exchange between ferrocene and CO in the presence of AlCl₃ [6]. However, this method does not apply to $Fp'CO^+$ because of the mertness of Cp'_2 Fe toward cleavage [7]. $Fp'(CO)^+ PF_6$ is easily obtained using the original Fischer-type synthesis from Fp'Br, under CO pressure, and $AlCl_3$ [8] (eq. 1).

$$C_{5}(CH_{3})_{5} Fe(CO)_{2} Br \xrightarrow{(1) CO, 40 atm, AlCl_{3}, 60^{\circ}C}{(2) HPF_{6}} C_{5}(CH_{3})_{5} Fe(CO)_{3}^{+} PF_{6}^{-}$$
(1)
Typically 3.27 g of Fp'Br (10 mmol) and 4 g of AlCl_{3} (30 mmol) are suspended in 150 ml of heptane and a 40-atm CO pressure is admitted to the autoclave. The best yields are obtained at 60-80°C. After reaction overnight, the autoclave is cooled down and the mixture hydrolyzed with 150 ml of $\overline{}^{*}F_{p} = C_{3}H_{3}Fe(CO)_{2} \cdot F_{p} = C_{3}(CH_{3})_{5}Fe(CO)_{2}$.

0022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.

Typically 3.27 g of Fp'Br (10 mmol) and 4 g of $AlCl_3$ (30 mmol) are suspended in 150 ml of heptane and a 40-atm CO pressure is admitted to the autoclave. The best yields are obtained at 60-80°C. After reaction overnight, the autoclave is cooled down and the mixture hydrolyzed with 150 ml of

^{*}Fp = $C_5H_5Fe(CO)_2 \cdot Fp = C_5(CH_3)_5Fe(CO)_2$.

Ice water. To the aqueous layer containing the soluble salt $Fp'CO^+ Cl^-$ is added 2 ml of 5 N HPF₆, which causes $Fp'CO^+ PF_6^-$ to precipitate This salt is filtered off, dissolved in acetone, reprecipitated by ether and recrystallized from 1/2 acetone/ethanol, which gives light yellow needles (2 80 g, 67% yield). Yields are 66 ± 1% for reaction temperatures of 60-80°C and 50% at 110°C. ¹H NMR (CD₃COCD₃). δ 2 25 ppm(Me₄Si). Other spectroscopic data for FpCO⁺ PF₆⁻ and Fp'CO⁺ PF₆⁻ are given in Table 1. Analysis Found C, 37 35; H, 3 46; Fe, 13 24. $C_{13}H_{15}O_3FePF_6$ calcd : C, 37 17; H, 3 60, Fe, 13.29%

TABLE 1

SPECTROSCOPIC DATA FOR FpCO⁺ PF₆⁻ AND Fp CO⁺ PF₆⁻

	IR v(CO) (cm ⁻¹) Nujol	¹³ C NMR δ (ppm) CD ₃ CN Me ₄ S1			Mössbauer (mm s ⁻¹) 77 K	
		со	Ср	Me	IS (vs Fe)	QS
Fp(CO) ⁺ PF ₆ ⁻	2072 2135 ^a	203 2 ^c	91 1 ^c		0 08 ^b	1 88 ^b
Fp (CO) ⁺ PF ₆ ⁻	2078, 2130	206 3	105 21	9 86	0 08	1 85

^a Ref. 6 and 8 ^b Ref. 9.^c This work

Although Fp⁻ can be produced inter alia by Na/Hg reduction of Fp₂ [10], this is not the case for Fp₂' because of its insolubility and its very negative reduction potential ($E_{1/2} = -1.80$ V/SCE in DMF + Bu₄N⁺Br⁻, i.e 0 36 V more negative than that for Fp₂). Good results are obtained only by a 2 h reduction of Fp₂' in THF with a K mirror (eq 2)

$$\{C_{5}(CH_{3})_{5}Fe(CO)_{2}\}_{2} \xrightarrow{\text{K mirror}} C_{5}(CH_{3})_{5}Fe(CO)_{2}^{-}K^{+}$$
(2)

Since no significant color change (dark brown purple) can be observed, and in view of the extreme air sensitivity of $Fp'^{-}K^{+}$, the reduction kinetics are best followed by TLC analysis of samples of the reaction mixture quenched with CH₃I (which gives $Fp'CH_3$). The THF solution of $Fp'^{-}K^{+}$ is filtered through a filter stick and evaporated to dryness (85% crude yield). $Fp'^{-}K^{+}$ is insoluble in CH₃CN and was not recrystallized. Its purity is shown by the presence of only two IR stretches in the CO region of the IR spectrum and a clean Mossbauer doublet (compare $Fp^{-}K^{+}$ (or Na⁺) and $Fp'^{-}K^{+}$ in Table 2).

On a 10 mmol scale, addition of CH_3I to a THF solution of Fp^-K^+ at 20°C affords, after removal of THF in vacuo and sublimation (70°C, 1 mmHg), 4.2 g

TABLE 2

IR AND MÖSSBAUER DATA FOR Fp⁻ K⁺

	IR v(CO) (cm ⁻¹)	Mössbauer ^c (mm s ⁻¹), 77 K				
		IS (vs Fe)	QS			
Fp M ⁺	1868, 1792 1772, (K ⁺ , THF) ^a 1880, 1735 (K ⁺ , Nujol) ^b	Na ⁺ 0.11	2 06			
Fp' ⁻ K ⁺	1985, 1845 (THF)	0 11	2 00			

^a Splitting of asymmetric CO stretch of Fp⁻K⁺ was observed in THF and attributed to ion pair formation, see ref. 11 ^b Ref. 12. ^c This work.

(16 mmol) of $Fp'CH_3$ (80% yield from Fp'_2) as yellow crystals. Analysis Found: C, 59.65; H, 7.02; Fe, 21.38. C13H18O2 Fe calcd.. C, 59.57; H, 6.92; Fe, 21.30%. IR ν (CO) (cm⁻¹): 1985 and 2040; NMR (δ (ppm), Me₄S₁). ¹H (C_6D_6) 0.08 (s, CH₃Fe); 1.45 (s, CH₃Cp), ¹³C (CDCl₃) -13.1 (CH₃Fe); 9.2 $(CH_3 Cp)$; 105.2 (Cp'); 219.5 (CO). Mösbauer (77 K, mm s⁻¹); IS = 0.12; QS = 1.88.

Acknowledgments. We are grateful to P. Michaud, J-P Mariot and Professor F. Varret (Le Mans) for the Mössbauer experiments and J.-R. Hamon for the electrochemical data, Financial assistance from the C.N R.S. and a pre-doctoral Fellowship (D.C.) from the D.G.R.S.T. is also acknowledged

References

- 1 For the most convenient synthesis and some leading preparations and references see R S Threlkel and J.E. Bercaw J Organometal Chem 136 (1977) 1,
- 2 R.B. King and M B Bisnette J. Organometal Chem 8 (1967) 287 For a recent review, see R B
- King, Coord Chem Rev 20 (1976) 155 3 The synthesis of $C_5(CH_3)_5 Fe(CO)_2 Br C_5(CH_3)_5 Fe^{n+} \eta^6 \cdot C_6 R_6 (R = H, CH_3 n = 0, 1),$ ($C_5 Me_5 Fe \cdot \eta^5 \cdot C_6 H_6)_2$ and $C_5 Me_5 Fe \cdot \eta^5 \cdot C_6 Me_5 CH_2$ [3c] have been reported recently (a) D Astruc, J-R. Hamon G Althoff, E Román P. Batail, P. Michaud, J-P Mariot, F Varret and D Cozak, J Amer. Chem Soc, 101 (1979) 5445 (b) J-R Hamon, D. Astruc and P. Michaud ibid 103 (1981) 758 (c) D Astruc, J.-R. Hamon, E Roman and P Michaud, ibid, 103 (1981) 7502.
- 4 For a leading example see M. Rosenblum, Acc. Chem. Res, 7 (1974) 122
- 5 L. Busetto and R J. Angelici, J. Am. Chem. Soc 91 (1969) 3197 and ref cited therein
- 6 E Román and D Astruc Inorg Chem, 18 (1979) 3284
- 7 D E. Bublitz, Can. J. Chem., 42 (1964) 2381.
- 8 (a) A. Davison, M L H Green and G. Wilkinson, J Chem. Soc. (1971) 3172, (b) E O. Fischer and K Fichtel, Chem Ber, (1961) 1200
- 9 R H. Herber, R B King and G K. Wertheim Inorg. Chem., 3 (1964) 101
- 10 (a) R B. King Acc. Chem. Res 3 (1970) 417, (b) R B King Organometallic Syntheses Academic Press, New York, 1965, vol. 1.
- 11 JE. Ellis and EA. Flom, J. Organometal. Chem, 99 (1975) 263.
- 12 J S. Plotkum and S G. Shore Inorg. Chem., 20 (1981) 284.